论文标题

(Quasi)三elliptic k3表面的模量空间的压缩

Compactifications of moduli space of (quasi-)trielliptic K3 surfaces

论文作者

Chen, Yitao, Wu, Haoyu, Yao, Hanyu

论文摘要

我们研究了I型的Q​​uasi-Trielliptic K3表面的Moduli空间$ \ MATHCAL {F} _ {T_1} $,其总成员是平稳的BIDEGREE $(2,3)$ - $ \ MATHBB的hypersurface的hypersurface of $ \ Mathbb {p}^p}^1 \ times \ times \ times \ mathbbbb {p p}^2 $。这种模量空间在模量$ 8 $ quasi偏振的K3表面的Hassett-Keel-keel-looijenga计划的研究中起着重要作用。 在本文中,我们考虑了$ \ MATHCAL {F} _ {T_1} $的几种天然压实,例如GIT压实和算术压缩。我们对$(2,3)$ - 超曲面的GIT稳定性进行了完整的分析,并提供了GIT紧凑型边界的具体描述。对于准三位一体K3表面的baily-borel压缩,我们还通过对某些晶格嵌入来计算边界的配置。作为一个应用程序,我们表明$(\ mathbb {p}^1 \ times \ times \ mathbb {p}^2,εs)$带有$ $ε$,如果$ s $是$ s $的k3表面,而最差的ade sighulinity则是k-stable。通过识别GIT稳定性和K稳定性,这给出了K稳定性压实边界的具体描述。我们还通过研究准三位一体K3表面的投射模型来讨论GIT,Baily-borel-borel压实和Looijenga的压缩之间的联系。

We study the moduli space $\mathcal{F}_{T_1}$ of quasi-trielliptic K3 surfaces of type I, whose general member is a smooth bidegree $(2,3)$-hypersurface of $\mathbb{P}^1\times \mathbb{P}^2$. Such moduli space plays an important role in the study of the Hassett-Keel-Looijenga program of the moduli space of degree $8$ quasi-polarized K3 surfaces. In this paper, we consider several natural compactifications of $\mathcal{F}_{T_1}$, such as the GIT compactification and arithmetic compactifications. We give a complete analysis of GIT stability of $(2,3)$-hypersurfaces and provide a concrete description of the boundary of the GIT compactification. For the Baily--Borel compactification of the quasi-trielliptic K3 surfaces, we also compute the configurations of the boundary by classifying certain lattice embeddings. As an application, we show that $(\mathbb{P}^1\times \mathbb{P}^2,εS)$ with small $ε$ is K-stable if $S$ is a K3 surface with at worst ADE singularities. This gives a concrete description of the boundary of the K-stability compactification via the identification of the GIT stability and the K-stability. We also discuss the connection between the GIT, Baily--Borel compactification, and Looijenga's compactifications by studying the projective models of quasi-trielliptic K3 surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源