论文标题

DRG-NET:糖尿病性视网膜病变分级的多层分割和分类的交互式联合学习

DRG-Net: Interactive Joint Learning of Multi-lesion Segmentation and Classification for Diabetic Retinopathy Grading

论文作者

Tusfiqur, Hasan Md, Nguyen, Duy M. H., Truong, Mai T. N., Nguyen, Triet A., Nguyen, Binh T., Barz, Michael, Profitlich, Hans-Juergen, Than, Ngoc T. T., Le, Ngan, Xie, Pengtao, Sonntag, Daniel

论文摘要

糖尿病性视网膜病(DR)是世界上视力丧失的主要原因,而早期DR检测是防止视力丧失和支持适当治疗的必要原因。在这项工作中,我们利用交互式机器学习,并引入一个称为DRG-NET的联合学习框架,以有效地学习疾病分级和多层分段。我们的DRG网络由两个模块组成:(i)DRG-ai系统,用于对DR分级,定位病变区域进行分类并提供视觉解释; (ii)DRG-Expert Itteraction接收从用户专家那里的反馈并改善DRG-ai系统。为了处理稀疏数据,我们利用转移学习机制通过使用Wasserstein距离和基于对抗性学习的熵最小化来提取不变特征表示。此外,我们在低水平和高级特征上提出了一种新型的注意策略,以自动选择最重要的病变信息并提供可解释的特性。在人类互动方面,我们进一步开发DRG-NET作为一种工具,使专家用户能够纠正系统的预测,然后可以将其用于整个系统。此外,由于病变特征和分类功能之间的注意力机制和损失功能的约束,我们的方法可以在用户反馈中有一定程度的噪音。我们在两个最大的DR数据集(即IDRID和FGADR)上对DRG-NET进行了基准测试,并将其与各种最新的深度学习网络进行了比较。除了超过其他SOTA方法外,即使以弱监督的方式,DRG-NET也可以有效地更新。

Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源