论文标题

通过周期性结构振荡和造成阵风的风力涡轮叶片截面上的不稳定负载进行建模

Modeling unsteady loads on wind-turbine blade sections from periodic structural oscillations and impinging gusts

论文作者

Wei, Nathaniel J., Shende, Omkar B.

论文摘要

许多用于风力涡轮机设计和分析的传统方法都假设准稳态空气动力学,但是大气流本质上是不稳定的,现代涡轮机叶片容易受到航空弹性变形的影响。因此,这项研究评估了简单的分析模型在捕获这种不稳定条件对风涡轮叶片的影响的有效性。我们将定期横向阵风中的俯仰和跌落式翼型视为刀片部分不稳定的装载方案的理想化。提出了从典型问题的线性组合得出的潜在流模型,以预测在短扰动极限下在二维机翼上的不稳定升力。然后,我们对NACA-0012机翼进行高保真二维数值模拟,并在一系列周期性的螺距,下跌和阵阵干扰上进行量化,并量化不稳定的升力响应的振幅和相位。对于低至中度强迫振幅和频率,发现与模型预测的良好一致,而当攻击幅度接近翼型的静态流动分离极限时,则观察到偏差。对理想流理论证明不足的情况给出了潜在的解释。这个理论框架和数值评估激发了将不稳定的流程模型纳入设计和仿真工具中,以在实际流动条件下提高风力涡轮叶片的稳健性和运行寿命。

Many traditional methods for wind turbine design and analysis assume quasi-steady aerodynamics, but atmospheric flows are inherently unsteady and modern turbine blades are susceptible to aeroelastic deformations. This study therefore evaluates the effectiveness of simple analytical models for capturing the effects of such unsteady conditions on wind-turbine blades. We consider a pitching and plunging airfoil in a periodic transverse gust as an idealization of unsteady loading scenarios on a blade section. A potential-flow model derived from a linear combination of canonical problems is proposed to predict the unsteady lift on a two-dimensional airfoil in the small-perturbation limit. We then perform high-fidelity two-dimensional numerical simulations of a NACA-0012 airfoil over a range of periodic pitch, plunge, and gust disturbances, and quantify the amplitude and phase of the unsteady lift response. Good agreement with the model predictions is found for low to moderate forcing amplitudes and frequencies, while deviations are observed when the angle-of-attack amplitudes approach the static flow-separation limit of the airfoil. Potential explanations are given for the cases in which the ideal-flow theory proves insufficient. This theoretical framework and numerical evaluation motivate the inclusion of unsteady flow models in design and simulation tools in order to increase the robustness and operational lifespans of wind turbine blades in real flow conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源