论文标题

通过认知立场检测来检查政治言论

Examining Political Rhetoric with Epistemic Stance Detection

论文作者

Gupta, Ankita, Blodgett, Su Lin, Gross, Justin H, O'Connor, Brendan

论文摘要

政治话语的参与者采用诸如对冲,归因或否认等修辞策略来表现自己对自己或他人提出的主张的不同程度的信念承诺。传统上,政治科学家通过劳动密集型手动内容分析研究了这些认知现象。我们建议通过从计算语义的研究中得出的认知立场预测来帮助自动化此类工作,以区分作者或其他提到的实体(信仰持有者)所断言,否认或仅仅提出的主张,否认或仅仅提出的内容。我们首先开发了一个简单的基于罗伯塔的模型,用于多源姿态预测,该模型的表现优于更复杂的最新建模模型。然后,我们通过对美国政治舆论书籍的大众市场宣言语料库进行大规模分析来展示其对政治科学的新应用,在这里,我们在美国政治意识形态中表征了被引用的信仰持有者(受人尊敬的盟友和反对的柏忌)的趋势。

Participants in political discourse employ rhetorical strategies -- such as hedging, attributions, or denials -- to display varying degrees of belief commitments to claims proposed by themselves or others. Traditionally, political scientists have studied these epistemic phenomena through labor-intensive manual content analysis. We propose to help automate such work through epistemic stance prediction, drawn from research in computational semantics, to distinguish at the clausal level what is asserted, denied, or only ambivalently suggested by the author or other mentioned entities (belief holders). We first develop a simple RoBERTa-based model for multi-source stance predictions that outperforms more complex state-of-the-art modeling. Then we demonstrate its novel application to political science by conducting a large-scale analysis of the Mass Market Manifestos corpus of U.S. political opinion books, where we characterize trends in cited belief holders -- respected allies and opposed bogeymen -- across U.S. political ideologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源