论文标题

在路径规划中学习自适应运动原始的政策优化,并具有动态障碍

Policy Optimization to Learn Adaptive Motion Primitives in Path Planning with Dynamic Obstacles

论文作者

Angulo, Brian, Panov, Aleksandr, Yakovlev, Konstantin

论文摘要

本文解决了具有静态和动态障碍的动态环境中非全面机器人的运动动力运动计划,这是一个充满挑战的问题,缺乏通用的解决方案。解决问题的一种有希望的方法是将问题分解为较小的子问题,并将本地解决方案组合到全球解决方案中。任何针对非全面机器人的计划方法的症结在于产生的运动原则,为当地计划子问题生成解决方案。在这项工作中,我们介绍了一种新颖的可学习转向功能(策略),该功能考虑了机器人的动力学限制以及静态和动态障碍。该政策通过策略优化有效培训。从经验上讲,我们表明我们的转向功能很好地推广到看不见的问题。然后,我们将经过训练的政策插入基于抽样的基于晶格的计划者,并评估所得的POLAMP算法(学习适应性运动原始元素的策略优化),以涉及在企业中运行的一系列具有挑战性的设置中,该设置涉及在障碍赛中运行的类似汽车的机器人。我们表明,当50个同时移动障碍物比最先进的竞争对手相比,Polamp能够计划无冲突的动力学轨迹,成功率高于92%。

This paper addresses the kinodynamic motion planning for non-holonomic robots in dynamic environments with both static and dynamic obstacles -- a challenging problem that lacks a universal solution yet. One of the promising approaches to solve it is decomposing the problem into the smaller sub problems and combining the local solutions into the global one. The crux of any planning method for non-holonomic robots is the generation of motion primitives that generates solutions to local planning sub-problems. In this work we introduce a novel learnable steering function (policy), which takes into account kinodynamic constraints of the robot and both static and dynamic obstacles. This policy is efficiently trained via the policy optimization. Empirically, we show that our steering function generalizes well to unseen problems. We then plug in the trained policy into the sampling-based and lattice-based planners, and evaluate the resultant POLAMP algorithm (Policy Optimization that Learns Adaptive Motion Primitives) in a range of challenging setups that involve a car-like robot operating in the obstacle-rich parking-lot environments. We show that POLAMP is able to plan collision-free kinodynamic trajectories with success rates higher than 92%, when 50 simultaneously moving obstacles populate the environment showing better performance than the state-of-the-art competitors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源