论文标题

锥体点的双曲线表面的模量卷

Volumes of moduli spaces of hyperbolic surfaces with cone points

论文作者

Anagnostou, Lukas, Norbury, Paul

论文摘要

在本文中,我们研究了具有测量,尖和锥形边界成分的双曲线表面模量空间的体积。我们在某些新情况下计算体积,特别是当存在较大的圆锥角度时。这使我们能够在替代假想的有价值边界长度的替换下对Mirzakhani的多项式赋予几何含义,这对应于双曲线角,并研究体积在圆锥角度的$2π$下的行为。

In this paper we study volumes of moduli spaces of hyperbolic surfaces with geodesic, cusp and cone boundary components. We compute the volumes in some new cases, in particular when there exists a large cone angle. This allows us to give geometric meaning to Mirzakhani's polynomials under substitution of imaginary valued boundary lengths, corresponding to hyperbolic cone angles, and to study the behaviour of the volume under the $2π$ limit of a cone angle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源