论文标题

在$λ_1U_{n_1} +λ_2U__{n_2} + \ ldots +λ_ku_{n_k} = wp_1^{z_1 {z_1} p_2^{z_2} {z_2} {z_2} \ cdots p_ss^{z_s^{

On the Diophantine equations of the form $λ_1U_{n_1} + λ_2U_{n_2} +\ldots + λ_kU_{n_k} = wp_1^{z_1}p_2^{z_2} \cdots p_s^{z_s}$

论文作者

Goedhart, Eva, Ha, Brian, McBeath, Lily, Velasco, Luisa

论文摘要

在本文中,我们考虑二芬太汀方程$λ_1U_{n_1}+\ ldots+λ_ku_{n_k} = wp_1^{z_1} \ cdots p_s p_s^{z_s}大于或等于2的顺序序列; $ W $是固定的非零整数; $ p_1,\ dots,p_s $是固定的,不同的质数; $λ_1,\ dots,λ_k$是严格的正整数;和$ n_1,\ dots,n_k,z_1,\ dots,z_s $是非负整数未知数。我们证明了在解决方案$(n_1,\ dots,n_k,z_1,\ dots,z_s)$上的有效计算上限的存在。 在我们的证明中,我们在对数中使用线性形式的下限,扩展了Pink and Ziegler(2016),Mazumdar and Rout(2019),Meher和Rout(2017)和Ziegler(2019)的作品。

In this paper, we consider the Diophantine equation $λ_1U_{n_1}+\ldots+λ_kU_{n_k}=wp_1^{z_1} \cdots p_s^{z_s},$ where $\{U_n\}_{n\geq 0}$ is a fixed non-degenerate linear recurrence sequence of order greater than or equal to 2; $w$ is a fixed non-zero integer; $p_1,\dots,p_s$ are fixed, distinct prime numbers; $λ_1,\dots,λ_k$ are strictly positive integers; and $n_1,\dots,n_k,z_1,\dots,z_s$ are non-negative integer unknowns. We prove the existence of an effectively computable upper-bound on the solutions $(n_1,\dots,n_k,z_1,\dots,z_s)$. In our proof, we use lower bounds for linear forms in logarithms, extending the work of Pink and Ziegler (2016), Mazumdar and Rout (2019), Meher and Rout (2017), and Ziegler (2019).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源