论文标题

使用可视化的技术来增强对机器学习模型的信任的现状

The State of the Art in Enhancing Trust in Machine Learning Models with the Use of Visualizations

论文作者

Chatzimparmpas, A., Martins, R., Jusufi, I., Kucher, K., Rossi, Fabrice, Kerren, A.

论文摘要

如今,机器学习(ML)模型已用于各种领域的复杂应用中,例如医学,生物信息学和其他科学。但是,由于其黑匣子性质,有时可能很难理解和信任它们提供的结果。这增加了对增强对ML模型的信任相关的可靠可视化工具的需求,这已成为过去几十年来可视化社区研究的重要主题。为了提供概述并介绍有关该主题的当前研究的前沿,我们提出了一份最新的报告(Star),以使用交互式可视化来增强ML模型的信任。我们定义并描述了该主题的背景,引入了旨在实现这一目标的可视化技术的分类,并讨论了未来研究方向的见解和机会。我们的贡献包括对交互式ML的不同方面的信任进行分类,从以前的研究中扩展和改进。我们的结果是从不同的分析角度研究的:(a)提供统计概述,(b)总结关键发现,(c)执行主题分析,以及(d)探索单个论文中使用的数据集,所有这些都支持基于网络的互动网络调查浏览器。我们打算这项调查对可视化研究人员有益,他们的兴趣涉及使ML模型更加值得信赖,以及其他学科的研究人员和从业人员在寻找有效的可视化技术,适合于以信心和数据的意义来解决其任务。

Machine learning (ML) models are nowadays used in complex applications in various domains, such as medicine, bioinformatics, and other sciences. Due to their black box nature, however, it may sometimes be hard to understand and trust the results they provide. This has increased the demand for reliable visualization tools related to enhancing trust in ML models, which has become a prominent topic of research in the visualization community over the past decades. To provide an overview and present the frontiers of current research on the topic, we present a State-of-the-Art Report (STAR) on enhancing trust in ML models with the use of interactive visualization. We define and describe the background of the topic, introduce a categorization for visualization techniques that aim to accomplish this goal, and discuss insights and opportunities for future research directions. Among our contributions is a categorization of trust against different facets of interactive ML, expanded and improved from previous research. Our results are investigated from different analytical perspectives: (a) providing a statistical overview, (b) summarizing key findings, (c) performing topic analyses, and (d) exploring the data sets used in the individual papers, all with the support of an interactive web-based survey browser. We intend this survey to be beneficial for visualization researchers whose interests involve making ML models more trustworthy, as well as researchers and practitioners from other disciplines in their search for effective visualization techniques suitable for solving their tasks with confidence and conveying meaning to their data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源