论文标题
Monge-ampère措施在紧凑型赫尔米利亚歧管上的收敛弱
Weak convergence of Monge-Ampère measures on compact Hermitian manifolds
论文作者
论文摘要
我们在一系列均匀界限的$ω$ - plurisubharmonic函数上提供了足够的条件,$ω$作为Hermitian公制,为此,相关的Monge-Ampère测量的顺序较弱地收敛。该标准可用于获得Monge-Ampère方程的有界$ω$ - $ plurisubharmonic解决方案。
We give a sufficient condition on a sequence of uniformly bounded $ω$-plurisubharmonic functions, $ω$ being a Hermitian metric, for which the sequence of associated Monge-Ampère measures converges weakly. This criterion can be used to obtained a bounded $ω$-plurisubharmonic solution to the Monge-Ampère equation.