论文标题
在元神经搜索中邻居生成的机器学习框架
A machine learning framework for neighbor generation in metaheuristic search
论文作者
论文摘要
本文提出了一种将机器学习技术集成到元启发式学以解决组合优化问题的方法。也就是说,我们在元神经搜索中为邻居产生提供了一个通用的机器学习框架。我们首先定义一个有效的邻域结构,该结构通过将转换应用于当前解决方案的变量子集构建。然后,提出的方法的关键是通过选择包含解决方案空间中目标下降的变量的适当子集来生成有希望的邻居。为了学习一个良好的可变选择策略,我们将问题提出为分类任务,从问题的特征和高质量的解决方案中利用结构信息。我们验证了两个元启发式应用程序的方法:一种用于解决无线网络优化问题的禁忌搜索方案,以及用于求解混合组件程序的大型邻里搜索启发式。实验结果表明,我们的方法能够在更大的解决方案空间的探索与对这两种应用的高质量解决方案区域的开发之间实现令人满意的权衡。
This paper presents a methodology for integrating machine learning techniques into metaheuristics for solving combinatorial optimization problems. Namely, we propose a general machine learning framework for neighbor generation in metaheuristic search. We first define an efficient neighborhood structure constructed by applying a transformation to a selected subset of variables from the current solution. Then, the key of the proposed methodology is to generate promising neighbors by selecting a proper subset of variables that contains a descent of the objective in the solution space. To learn a good variable selection strategy, we formulate the problem as a classification task that exploits structural information from the characteristics of the problem and from high-quality solutions. We validate our methodology on two metaheuristic applications: a Tabu Search scheme for solving a Wireless Network Optimization problem and a Large Neighborhood Search heuristic for solving Mixed-Integer Programs. The experimental results show that our approach is able to achieve a satisfactory trade-off between the exploration of a larger solution space and the exploitation of high-quality solution regions on both applications.