论文标题

Abode-Net:一种基于注意的深度学习模型,用于使用智能电表数据

ABODE-Net: An Attention-based Deep Learning Model for Non-intrusive Building Occupancy Detection Using Smart Meter Data

论文作者

Luo, Zhirui, Qi, Ruobin, Li, Qingqing, Zheng, Jun, Shao, Sihua

论文摘要

占用信息对于建筑部门的有效能源管理非常有用。高级计量基础设施(AMI)网络收集的庞大的高分辨率电力消耗数据使得以非侵入性的方式推断建筑物的占用状态成为可能。在本文中,我们提出了一个名为Abode-Net的深倾斜模型,该模型使用智能电表数据采用新颖的平行注意(PA)块来建筑占用检测。 PA块以平行的方式结合了时间,变量和通道注意模块,以表示占用检测的重要特征。在我们的性能评估中,我们采用了两个智能电表数据集,用于构建占用率检测。包括一组最先进的机器学习和深度学习模型,以进行性能比较。结果表明,在所有实验案例中,Abode-NET都显着胜过其他模型,这证明了其有效性是解决非侵入性建筑物占用检测的解决方案。

Occupancy information is useful for efficient energy management in the building sector. The massive high-resolution electrical power consumption data collected by smart meters in the advanced metering infrastructure (AMI) network make it possible to infer buildings' occupancy status in a non-intrusive way. In this paper, we propose a deep leaning model called ABODE-Net which employs a novel Parallel Attention (PA) block for building occupancy detection using smart meter data. The PA block combines the temporal, variable, and channel attention modules in a parallel way to signify important features for occupancy detection. We adopt two smart meter datasets widely used for building occupancy detection in our performance evaluation. A set of state-of-the-art shallow machine learning and deep learning models are included for performance comparison. The results show that ABODE-Net significantly outperforms other models in all experimental cases, which proves its validity as a solution for non-intrusive building occupancy detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源