论文标题
对比的错误归因于鉴定语言模型
Contrastive Error Attribution for Finetuned Language Models
论文作者
论文摘要
最近的工作已经确定了嘈杂和误导的数据是幻觉的核心原因和自然语言生成(NLG)任务的不忠成果。因此,识别和删除这些示例是创建可靠的NLG系统的关键开放挑战。在这项工作中,我们介绍了一个框架,以识别和删除导致不良输出的低质量培训实例,例如文本摘要中的忠诚错误。我们表明,现有的错误跟踪方法(例如基于梯度的影响力措施)并不能可靠地检测NLG数据集中的忠诚错误。我们通过一种基于新的,基于对比的估算值将不希望的世代与人校正的输出进行比较,从而克服了现有错误追踪方法的缺点。我们提出的方法可以达到平均平均精度为0.93,以检测具有已知地面真相的综合任务的已知数据误差,从而实质上超过了现有方法。使用这种方法和重新训练模型在清洁数据上可导致NYT数据集的实体幻觉减少70%,而E2E数据集的语义错误降低了55%。
Recent work has identified noisy and misannotated data as a core cause of hallucinations and unfaithful outputs in Natural Language Generation (NLG) tasks. Consequently, identifying and removing these examples is a key open challenge in creating reliable NLG systems. In this work, we introduce a framework to identify and remove low-quality training instances that lead to undesirable outputs, such as faithfulness errors in text summarization. We show that existing approaches for error tracing, such as gradient-based influence measures, do not perform reliably for detecting faithfulness errors in NLG datasets. We overcome the drawbacks of existing error tracing methods through a new, contrast-based estimate that compares undesired generations to human-corrected outputs. Our proposed method can achieve a mean average precision of 0.93 at detecting known data errors across synthetic tasks with known ground truth, substantially outperforming existing approaches. Using this approach and re-training models on cleaned data leads to a 70% reduction in entity hallucinations on the NYT dataset and a 55% reduction in semantic errors on the E2E dataset.