论文标题

对角线分隔连续的平方

Diagonals separating the square of a continuum

论文作者

Illanes, Alejandro, Martínez-de-la-Vega, Verónica, Martínez-Montejano, Jorge M., Michalik, Daria

论文摘要

如果不能将其作为其两个适当的SubContinua的结合,则公制连续性$ x $是不可分配的。如果对于每对$ p,q \ in r $,则$ x $的子集$ r $ a $ x $连续连接。令$ x^{2} $表示$ x $的笛卡尔广场,$δ$ $ x^{2} $的对角线。在\ cite {ka}中,询问是否要使用continuum $ x $,与弧不同,$ x^{2} \setMinusδ$在且仅当$ x $是分解时才连接。在本文中,我们表明这个问题没有任何含义。为了证明非本质的证明,我们使用cantor设置的合适同态同态的动态属性来构建适当的不可塑性continuum $ x $。

A metric continuum $X$ is indecomposable if it cannot be put as the union of two of its proper subcontinua. A subset $R$ of $X$ is said to be continuumwise connected provided that for each pair of points $p,q\in R$, there exists a subcontinuum $M$ of $X$ such that $\{p,q\}\subset M\subset R$. Let $X^{2}$ denote the Cartesian square of $X$ and $Δ$ the diagonal of $X^{2}$. In \cite{ka} it was asked if for a continuum $X$, distinct from the arc, $X^{2}\setminus Δ$ is continuumwise connected if and only if $X$ is decomposable. In this paper we show that no implication in this question holds. For the proof of the non-necessity, we use the dynamic properties of a suitable homeomorphism of the Cantor set onto itself to construct an appropriate indecomposable continuum $X$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源