论文标题

$ \ mathrm {psl} _2(q)的嵌入在特征$ \ ne2,3 $的领域的特殊类型中

Embeddings of $\mathrm{PSL}_2(q)$ in exceptional groups of Lie type over a field of characteristic $\ne2,3$

论文作者

Pachera, A.

论文摘要

令$ \ boldsymbol {g} $为特征性$ p $,$ g = \ boldsymbol {g}^σ$的固定点子组在Steinberg endopoint子组中的一个代数类型,在Steinberg Endomorphism $σ$和$ fline etlline {g} $ a socle $ g $的情况下。最大亚组$ m <\ overline {g} $几乎很简单,并且其socle对特征性$ p $中的谎言类型不是同构。 $ \ boldsymbol {g} $的有限亚组$ h $如果不在$ \ boldsymbol {g} $的任何适当的闭合正维子群中,则是原始的。如果它位于$ \ boldsymbol {g} $的阳性亚组$ \ boldsymbol {x} $中,则说明它是不明显的。如果可以选择$ n _ {\ Mathrm {aut} \ boldsymbol {g}}(h)$,则可以选择$ \ boldsymbol {x} $,这是非常不可思议$ \ boldsymbol {g} $。 我们研究了非类别原始简单组$ h $ $ h $的可能嵌入代数组$ \ boldsymbol {g} $在特征coprime到$ | h | $时$(\ boldsymbol {g},h)$是$(\ boldsymbol {f boldsymbol {f} $(\ boldsymbol {f} _4,\ mathrm {psl} _2(27))$,$(\ boldsymbol {e} _7,\ \ m缩\ Mathrm {psl} _2(29)_2(29))$,$(\ boldsymbol {\ boldsymbol {e} _7} _7,$ mathrmmmathrmmmatrm = 7,特别是,我们在合适的有限字段$ k $上构建了$ h $ in $ g $的$ h $,并用它们来推定$ g $和$ g $和$ \ boldsymbol {g} $的连轭类别的数量,以及$ n _ {\ edrowlline {g}}}(h)$是否是$ subgup of $ subpline $。我们还研究了$ h \ simeq \ mathrm {alt} _6 \ simeq \ simeq \ mathrm {psl} _2(9)$时, $ h $是$ \ boldsymbol {g} $的强烈不可或缺的子组;特别是,$ n _ {\ overline {g}}(h)$不是$ \ overline {g} $的最大子组。

Let $\boldsymbol{G}$ be an algebraic group of exceptional Lie type in characteristic $p$, $G=\boldsymbol{G}^σ$ its fixed-point subgroup under the action of a Steinberg endomorphism $σ$, and $\overline{G}$ an almost simple group with socle $G$. A maximal subgroup $M<\overline{G}$ is called non-generic if it is almost simple and its socle is not isomorphic to a group of Lie type in characteristic $p$. A finite subgroup $H$ of $\boldsymbol{G}$ is Lie primitive if it does not lie in any proper closed positive-dimensional subgroup of $\boldsymbol{G}$; it is Lie imprimitive if it lies in a positive-dimensional subgroup $\boldsymbol{X}$ of $\boldsymbol{G}$; it is strongly imprimitive if $\boldsymbol{X}$ can be chosen to be stable under the action of $N_{\mathrm{Aut}\boldsymbol{G}}(H)$, where $\mathrm{Aut}\boldsymbol{G}$ is the group generated by inner, diagonal, graph, and field automorphisms of $\boldsymbol{G}$. We study the possible embeddings of a non-generic primitive simple group $H$ in the adjoint algebraic group $\boldsymbol{G}$ in characteristic coprime to $|H|$ when $(\boldsymbol{G},H)$ is one of $(\boldsymbol{F}_4,\mathrm{PSL}_2(25))$, $(\boldsymbol{F}_4,\mathrm{PSL}_2(27))$, $(\boldsymbol{E}_7,\mathrm{PSL}_2(29))$, $(\boldsymbol{E}_7,\mathrm{PSL}_2(37))$. In particular, we construct copies of $H$ in $G$ over a suitable finite field $k$, and use them to deduce the number of conjugacy classes of $H$ in $G$ and $\boldsymbol{G}$, and whether $N_{\overline{G}}(H)$ is a maximal subgroup of $\overline{G}$. We also study the case of $H\simeq\mathrm{Alt}_6\simeq\mathrm{PSL}_2(9)$ when $\boldsymbol{G}$ is one of $\boldsymbol{F}_4$ and $\boldsymbol{E}_6$ in characteristic coprime to $|H|$, and show that in such cases $H$ is a strongly imprimitive subgroup of $\boldsymbol{G}$; in particular, $N_{\overline{G}}(H)$ is not a maximal subgroup of $\overline{G}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源