论文标题
功能辍学:重新审视增强作用在对比度学习中的作用
Feature Dropout: Revisiting the Role of Augmentations in Contrastive Learning
论文作者
论文摘要
增强性在对比学习中起什么作用?最近的工作表明,良好的增强在特定的下游任务方面具有标签。我们通过表明毁灭标签的增强功能在基础模型设置中很有用,使这张照片变得复杂,在基础模型设置中,目标是学习多个下游任务的多样化,通用表示。我们对具有多个下游任务的一系列图像和音频数据集进行了对比学习实验(例如,在照片上叠加的数字,预测一个类别与另一个类别)。我们发现,ViewMaker Networks是一个最近提出的用于学习增强对比度学习的模型,产生了破坏标签的增强,从而随机破坏了不同下游任务所需的功能。这些增强是可解释的(例如,与专家设计的增强量相比,与专家设计的增强相比,相比之下,通常会导致更高的性能,尽管不保留标签信息,但通常会提高性能。为了支持我们的经验结果,我们理论上通过线性模型分析了简单的对比学习设置。在这种情况下,破坏标签的增强对于防止一组功能抑制对另一个下游任务有用的功能的学习至关重要。我们的结果强调了在试图解释基础模型成功时,需要分析多个下游任务之间的相互作用。
What role do augmentations play in contrastive learning? Recent work suggests that good augmentations are label-preserving with respect to a specific downstream task. We complicate this picture by showing that label-destroying augmentations can be useful in the foundation model setting, where the goal is to learn diverse, general-purpose representations for multiple downstream tasks. We perform contrastive learning experiments on a range of image and audio datasets with multiple downstream tasks (e.g. for digits superimposed on photographs, predicting the class of one vs. the other). We find that Viewmaker Networks, a recently proposed model for learning augmentations for contrastive learning, produce label-destroying augmentations that stochastically destroy features needed for different downstream tasks. These augmentations are interpretable (e.g. altering shapes, digits, or letters added to images) and surprisingly often result in better performance compared to expert-designed augmentations, despite not preserving label information. To support our empirical results, we theoretically analyze a simple contrastive learning setting with a linear model. In this setting, label-destroying augmentations are crucial for preventing one set of features from suppressing the learning of features useful for another downstream task. Our results highlight the need for analyzing the interaction between multiple downstream tasks when trying to explain the success of foundation models.