论文标题
部分可观测时空混沌系统的无模型预测
Identifying and Explaining Safety-critical Scenarios for Autonomous Vehicles via Key Features
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Ensuring the safety of autonomous vehicles (AVs) is of utmost importance and testing them in simulated environments is a safer option than conducting in-field operational tests. However, generating an exhaustive test suite to identify critical test scenarios is computationally expensive as the representation of each test is complex and contains various dynamic and static features, such as the AV under test, road participants (vehicles, pedestrians, and static obstacles), environmental factors (weather and light), and the road's structural features (lanes, turns, road speed, etc.). In this paper, we present a systematic technique that uses Instance Space Analysis (ISA) to identify the significant features of test scenarios that affect their ability to reveal the unsafe behaviour of AVs. ISA identifies the features that best differentiate safety-critical scenarios from normal driving and visualises the impact of these features on test scenario outcomes (safe/unsafe) in 2D. This visualization helps to identify untested regions of the instance space and provides an indicator of the quality of the test suite in terms of the percentage of feature space covered by testing. To test the predictive ability of the identified features, we train five Machine Learning classifiers to classify test scenarios as safe or unsafe. The high precision, recall, and F1 scores indicate that our proposed approach is effective in predicting the outcome of a test scenario without executing it and can be used for test generation, selection, and prioritization.