论文标题

移动应用开发的基于元疗法的能源感知图像压缩

Metaheuristic-based Energy-aware Image Compression for Mobile App Development

论文作者

Mousavirad, Seyed Jalaleddin, Alexandre, Luís A

论文摘要

JPEG标准广泛用于不同的图像处理应用程序。 JPEG标准的主要组成部分之一是定量表(QT),因为它在图像质量和文件大小等图像属性中起着至关重要的作用。近年来,已经执行了基于基于人群的元启发式(PBMH)算法的几项努力,以找到适当的QT(s),尽管他们没有事先考虑用户意见。以Android开发人员为例,更喜欢小型图像,而优化过程会产生高质量的图像,从而导致巨大的文件大小。当前作品的另一个陷阱是缺乏全面的覆盖范围,这意味着QT无法提供所有可能的文件大小和质量组合。因此,本文旨在提出三个不同的贡献。首先,要将用户意见包括在压缩过程中,输出图像的文件大小可以由用户提前控制。为此,我们为基于人群的JPEG图像压缩提出了一个新的目标函数。其次,为了解决缺乏全面的覆盖范围,我们建议一种新颖的代表。我们提出的表示不仅可以提供更全面的覆盖范围,而且还可以在没有任何背景知识的情况下找到特定图像的质量因素的正确价值。表示形式的变化和目标函数都与搜索策略无关,并且可以与任何类型的基于人群的元疗法(PBMH)算法一起使用。因此,作为第三个贡献,我们还为22种最新且最近引入的PBMH算法提供了全面的基准。我们在不同基准图像和不同标准方面进行的广泛实验表明,我们针对JPEG图像压缩的新型配方可以有效地工作。

The JPEG standard is widely used in different image processing applications. One of the main components of the JPEG standard is the quantisation table (QT) since it plays a vital role in the image properties such as image quality and file size. In recent years, several efforts based on population-based metaheuristic (PBMH) algorithms have been performed to find the proper QT(s) for a specific image, although they do not take into consideration the user opinion in advance. Take an android developer as an example, who prefers a small-size image, while the optimisation process results in a high-quality image, leading to a huge file size. Another pitfall of the current works is a lack of comprehensive coverage, meaning that the QT(s) can not provide all possible combinations of file size and quality. Therefore, this paper aims to propose three distinct contributions. First, to include the user opinion in the compression process, the file size of the output image can be controlled by a user in advance. To this end, we propose a novel objective function for population-based JPEG image compression. Second, to tackle the lack of comprehensive coverage, we suggest a novel representation. Our proposed representation can not only provide more comprehensive coverage but also find the proper value for the quality factor for a specific image without any background knowledge. Both changes in representation and objective function are independent of the search strategies and can be used with any type of population-based metaheuristic (PBMH) algorithm. Therefore, as the third contribution, we also provide a comprehensive benchmark on 22 state-of-the-art and recently-introduced PBMH algorithms. Our extensive experiments on different benchmark images and in terms of different criteria show that our novel formulation for JPEG image compression can work effectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源