论文标题

Finger-Nestnet:使用深嵌套残留网络在智能手机上可解释的指纹验证

Finger-NestNet: Interpretable Fingerphoto Verification on Smartphone using Deep Nested Residual Network

论文作者

Ramachandra, Raghavendra, Li, Hailin

论文摘要

使用智能手机捕获的Fingerphoto图像成功地用于验证启用了多个应用程序的个人。这项工作提出了一种新型的算法,用于使用嵌套的残留块:指孔嵌段。提出的手指圈结构设计具有三个连续的卷积块,然后是一系列嵌套残留块,以实现可靠的指控验证。本文还使用四种不同的可视化技术介绍了该方法的解释性,这些技术可以阐明指纹生物识别技术中的关键区域,这可以有助于该方法的可靠验证性能。在Fingerphoto数据集上进行了广泛的实验,该数据集由使用iPhone6s从52个独特数据主题中收集的196个独特手指组成。实验结果表明,该方法的验证得到了改进,而EER = 1.15%的六种不同的现有方法。

Fingerphoto images captured using a smartphone are successfully used to verify the individuals that have enabled several applications. This work presents a novel algorithm for fingerphoto verification using a nested residual block: Finger-NestNet. The proposed Finger-NestNet architecture is designed with three consecutive convolution blocks followed by a series of nested residual blocks to achieve reliable fingerphoto verification. This paper also presents the interpretability of the proposed method using four different visualization techniques that can shed light on the critical regions in the fingerphoto biometrics that can contribute to the reliable verification performance of the proposed method. Extensive experiments are performed on the fingerphoto dataset comprised of 196 unique fingers collected from 52 unique data subjects using an iPhone6S. Experimental results indicate the improved verification of the proposed method compared to six different existing methods with EER = 1.15%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源