论文标题

减轻对抗灰盒对网络钓鱼探测器的攻击

Mitigating Adversarial Gray-Box Attacks Against Phishing Detectors

论文作者

Apruzzese, Giovanni, Subrahmanian, V. S.

论文摘要

尽管基于机器学习的算法已被广泛用于检测网络钓鱼网站,但关于对手如何攻击此类“网络钓鱼探测器”(简称PDS)的工作相对较少。在本文中,我们提出了对对手可能使用的一系列灰色盒子攻击,这些攻击可能会根据他对PD的知识而有所不同。我们表明,这些攻击严重降低了几种现有PD的有效性。然后,我们提出了操作链的概念,即迭代地将原始功能集绘制为新的功能集,并开发“保护操作链”(简称为简短)算法。 POC利用随机特征选择和特征映射的组合,以增加攻击者对目标PD的不确定性。使用3个现有的公开数据集以及我们创建的第四个数据集并在本文发布后发布的第四个,我们表明,POC对这些攻击比过去的竞争性工作更强大,同时在没有对抗性攻击的情况下保留预测性能。此外,POC对13个不同的分类器的攻击是强大的,而不仅仅是一个分类器。这些结果显示在p <0.001水平上具有统计学意义。

Although machine learning based algorithms have been extensively used for detecting phishing websites, there has been relatively little work on how adversaries may attack such "phishing detectors" (PDs for short). In this paper, we propose a set of Gray-Box attacks on PDs that an adversary may use which vary depending on the knowledge that he has about the PD. We show that these attacks severely degrade the effectiveness of several existing PDs. We then propose the concept of operation chains that iteratively map an original set of features to a new set of features and develop the "Protective Operation Chain" (POC for short) algorithm. POC leverages the combination of random feature selection and feature mappings in order to increase the attacker's uncertainty about the target PD. Using 3 existing publicly available datasets plus a fourth that we have created and will release upon the publication of this paper, we show that POC is more robust to these attacks than past competing work, while preserving predictive performance when no adversarial attacks are present. Moreover, POC is robust to attacks on 13 different classifiers, not just one. These results are shown to be statistically significant at the p < 0.001 level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源