论文标题
神经控制器合成用于信号时间逻辑规格的神经控制器,使用编码器解码器结构化网络
Neural Controller Synthesis for Signal Temporal Logic Specifications Using Encoder-Decoder Structured Networks
论文作者
论文摘要
在本文中,我们提出了一种使用神经网络(NNS)的信号时间逻辑(STL)规范的控制合成方法。以前的大多数作品都考虑仅针对给定的STL规范培训控制器。但是,如果出现新规范并需要满足新规范,则需要对NN控制器进行重新培训,从而导致记忆力大量消耗和效率低下的培训。为了解决这个问题,我们建议通过引入带有注意机制的编码器结构化NN来构建NN控制器。编码器以STL公式为输入并将其编码为适当的向量,并且解码器输出控制信号将符合给定规范。作为编码器,我们考虑了三个NN结构:顺序,树结构和图形结构的NN。所有模型参数均以端到端的方式训练,以最大化预期的鲁棒性,该鲁棒性被称为STL公式的定量语义。我们通过路径计划问题的数值实验比较了上述NN结构所获得的控制性能,并显示了所提出方法的功效。
In this paper, we propose a control synthesis method for signal temporal logic (STL) specifications with neural networks (NNs). Most of the previous works consider training a controller for only a given STL specification. These approaches, however, require retraining the NN controller if a new specification arises and needs to be satisfied, which results in large consumption of memory and inefficient training. To tackle this problem, we propose to construct NN controllers by introducing encoder-decoder structured NNs with an attention mechanism. The encoder takes an STL formula as input and encodes it into an appropriate vector, and the decoder outputs control signals that will meet the given specification. As the encoder, we consider three NN structures: sequential, tree-structured, and graph-structured NNs. All the model parameters are trained in an end-to-end manner to maximize the expected robustness that is known to be a quantitative semantics of STL formulae. We compare the control performances attained by the above NN structures through a numerical experiment of the path planning problem, showing the efficacy of the proposed approach.