论文标题

可靠的多模式轨迹通过误差对准不确定性优化的预测

Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty Optimization

论文作者

Kose, Neslihan, Krishnan, Ranganath, Dhamasia, Akash, Tickoo, Omesh, Paulitsch, Michael

论文摘要

在深层神经网络中,可靠的不确定性量化对于安全至关重要的应用非常重要,例如自动驾驶以进行可信赖和知情的决策。评估不确定性估计的质量是具有挑战性的,因为不提供不确定性估计的基础真相。理想情况下,在良好的模型中,不确定性估计应与模型误差完全相关。我们提出了一个新颖的错误不确定性优化方法,并引入了可训练的损失函数,以指导模型产生良好的质量不确定性估计与模型误差对齐。我们的方法目标是连续结构化的预测和回归任务,并在多个数据集上进行评估,包括涉及现实世界分布变化的大规模车辆运动预测任务。我们证明,我们的方法将平均位移误差提高了1.69%和4.69%,并且与模型误差的不确定性相关性在两个最新的基础线上通过Pearson相关系数量化了17.22%和19.13%。

Reliable uncertainty quantification in deep neural networks is very crucial in safety-critical applications such as automated driving for trustworthy and informed decision-making. Assessing the quality of uncertainty estimates is challenging as ground truth for uncertainty estimates is not available. Ideally, in a well-calibrated model, uncertainty estimates should perfectly correlate with model error. We propose a novel error aligned uncertainty optimization method and introduce a trainable loss function to guide the models to yield good quality uncertainty estimates aligning with the model error. Our approach targets continuous structured prediction and regression tasks, and is evaluated on multiple datasets including a large-scale vehicle motion prediction task involving real-world distributional shifts. We demonstrate that our method improves average displacement error by 1.69% and 4.69%, and the uncertainty correlation with model error by 17.22% and 19.13% as quantified by Pearson correlation coefficient on two state-of-the-art baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源