论文标题

最大更新密度的参数估计

Parameter Estimation with Maximal Updated Densities

论文作者

Pilosov, Michael, del-Castillo-Negrete, Carlos, Yen, Tian Yu, Butler, Troy, Dawson, Clint

论文摘要

最近开发的度量理论框架解决了模型中不确定性的不确定性主要是由于模型输入(即参数)中的不确定性(即不可约束)的不确定性,因此解决了随机逆问题(SIP)。随后的推论目标是参数的分布。另一类逆问题是在假设应该减少此类不确定性的假设中量化“真实”参数值的不确定性,因为将更多的数据纳入了问题,即不确定性被认为是认知的。这项工作的主要贡献是在为SIP开发的量度理论框架中的这种参数识别问题(PIP)的制定和解决方案。该方法是新颖的,因为它利用了一种随机远期问题(SFP)的解决方案,仅在模型输出数据告知的参数方向上更新初始密度。换句话说,此方法仅在未通知数据告知的参数方向上执行“选择性正则化”。该解决方案由最大更新密度(MUD)点定义,在该点更新的密度定义了对PIP的测量解决方案。这项工作的另一个重要贡献是具有高斯分布的线性图的存在和泥点的独特性的完整理论。还提供并分析了数据构成的利息量(QOI)地图,以解决此量度理论框架内的PIP,以减少泥浆估计中的不确定性。最后,我们证明了该方法在涉及空间或时间数据的两个问题上的一般适用性,以估计不确定的模型参数。

A recently developed measure-theoretic framework solves a stochastic inverse problem (SIP) for models where uncertainties in model output data are predominantly due to aleatoric (i.e., irreducible) uncertainties in model inputs (i.e., parameters). The subsequent inferential target is a distribution on parameters. Another type of inverse problem is to quantify uncertainties in estimates of "true" parameter values under the assumption that such uncertainties should be reduced as more data are incorporated into the problem, i.e., the uncertainty is considered epistemic. A major contribution of this work is the formulation and solution of such a parameter identification problem (PIP) within the measure-theoretic framework developed for the SIP. The approach is novel in that it utilizes a solution to a stochastic forward problem (SFP) to update an initial density only in the parameter directions informed by the model output data. In other words, this method performs "selective regularization" only in the parameter directions not informed by data. The solution is defined by a maximal updated density (MUD) point where the updated density defines the measure-theoretic solution to the PIP. Another significant contribution of this work is the full theory of existence and uniqueness of MUD points for linear maps with Gaussian distributions. Data-constructed Quantity of Interest (QoI) maps are also presented and analyzed for solving the PIP within this measure-theoretic framework as a means of reducing uncertainties in the MUD estimate. We conclude with a demonstration of the general applicability of the method on two problems involving either spatial or temporal data for estimating uncertain model parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源