论文标题
强烈的强力产品猜想的证明
A Proof of the Grundy domination strong product conjecture
论文作者
论文摘要
简单图的grundy统治数$ g =(v,e)$是唯一最长的唯一顶点的长度$ s =(v_1,\ ldots,v_k)$,$ v_i \ in v $,可满足属性$ n [v_i] \ setMinus \ setMinus \ cup_ = 1 = 1} n ne n ne [v_i] $ i \ in [k] $。在这里,$ n(v)= \ {u:uv \ in E \} $和$ n [v] = n(v)\ cup \ {v \} $。在本说明中,我们证明了两个图的强乘积的Grundy统治数。然后,我们讨论该结果与图形强产物的零强制数之间的关系。
The Grundy domination number of a simple graph $G = (V,E)$ is the length of the longest sequence of unique vertices $S = (v_1, \ldots, v_k)$, $v_i \in V$, that satisfies the property $N[v_i] \setminus \cup_{j=1}^{i-1}N[v_j] \neq \emptyset$ for each $i \in [k]$. Here, $N(v) = \{u : uv \in E\}$ and $N[v] = N(v) \cup \{v\}$. In this note, we prove a recent conjecture about the Grundy domination number of the strong product of two graphs. We then discuss how this result relates to the zero forcing number of the strong product of graphs.