论文标题
无轨道密度功能理论的自动分化
Automatic Differentiation for Orbital-Free Density Functional Theory
论文作者
论文摘要
可区分的编程促进了科学计算中的众多方法论进步。支持自动差异化的物理引擎具有更简单的代码,加速了开发过程并减少了维护负担。此外,完全不同的仿真工具可以直接评估具有挑战性的衍生物(包括与实验可测量的属性直接相关的衍生物),这些衍生物是使用有限差异方法计算得出的。在这里,我们研究了材料的无轨道密度功能理论(OFDFT)模拟的自动分化,并引入了AD。其对源自第一衍生物(包括功能电位,力和应力)的特性的自动评估,促进了新密度函数的开发和测试,而直接评估需要高阶衍生物的属性,例如块状模量,弹性常数和力常数,与传统的有限差异相比,它提供了更多的简洁实施方法。由于这些原因,ADD是一种出色的原型工具,并为OFDFT提供了新的机会。
Differentiable programming has facilitated numerous methodological advances in scientific computing. Physics engines supporting automatic differentiation have simpler code, accelerating the development process and reducing the maintenance burden. Furthermore, fully-differentiable simulation tools enable direct evaluation of challenging derivatives - including those directly related to properties measurable by experiment - that are conventionally computed with finite difference methods. Here, we investigate automatic differentiation in the context of orbital-free density functional theory (OFDFT) simulations of materials, introducing PROFESS-AD. Its automatic evaluation of properties derived from first derivatives, including functional potentials, forces, and stresses, facilitates the development and testing of new density functionals, while its direct evaluation of properties requiring higher-order derivatives, such as bulk moduli, elastic constants, and force constants, offers more concise implementations compared to conventional finite difference methods. For these reasons, PROFESS-AD serves as an excellent prototyping tool and provides new opportunities for OFDFT.