论文标题
使用事件摄像机保存隐私的视觉本地化
Privacy-Preserving Visual Localization with Event Cameras
论文作者
论文摘要
我们使用事件摄像机提出了一种强大的,具有隐私的视觉本地化算法。尽管事件摄像机由于高动态范围和小运动模糊而有可能实现稳健的定位,但传感器表现出较大的域间隙,因此很难直接应用传统的基于图像的定位算法。为了减轻差距,我们建议在本地化之前应用事件到图像转换,从而导致稳定的本地化。从隐私角度来看,事件摄像机与普通摄像机相比仅捕获一小部分视觉信息,因此自然可以隐藏敏感的视觉细节。为了进一步增强基于事件的管道中的隐私保护,我们在两个级别(即传感器和网络级别)中引入隐私保护。传感器级别的保护旨在使用轻量级过滤隐藏面部细节,而网络级别保护则使用新型的神经网络推理管道将整个用户的视图隐藏在私人场景应用程序中。两种保护级别都涉及轻量级计算,并且仅产生少量的性能损失。因此,我们将我们的方法投射为使用事件摄像机的实用基于位置服务的构件。代码和数据集将通过以下链接公开:https://github.com/82magnolia/event_localization。
We present a robust, privacy-preserving visual localization algorithm using event cameras. While event cameras can potentially make robust localization due to high dynamic range and small motion blur, the sensors exhibit large domain gaps making it difficult to directly apply conventional image-based localization algorithms. To mitigate the gap, we propose applying event-to-image conversion prior to localization which leads to stable localization. In the privacy perspective, event cameras capture only a fraction of visual information compared to normal cameras, and thus can naturally hide sensitive visual details. To further enhance the privacy protection in our event-based pipeline, we introduce privacy protection at two levels, namely sensor and network level. Sensor level protection aims at hiding facial details with lightweight filtering while network level protection targets hiding the entire user's view in private scene applications using a novel neural network inference pipeline. Both levels of protection involve light-weight computation and incur only a small performance loss. We thus project our method to serve as a building block for practical location-based services using event cameras. The code and dataset will be made public through the following link: https://github.com/82magnolia/event_localization.