论文标题
带有悬浮次波长大小的纳米线的腔纳米机械
Cavity nano-optomechanics with suspended subwavelength-sized nanowires
论文作者
论文摘要
在空腔纳米局部力学领域中,中间方法的纳米架方法包括插入一个纳米线的次波长大小可变形的谐振器,以纳米线的形式插入纤维微腔的小模式。纳米线中的内部共振增强了光纳米线相互作用,该相互作用提供了巨大的耦合强度 - 足以进入腔验光力学的单个光子状态 - 可以精确地将纳米线定位在腔场中。在这里,我们揭示了一个理论描述,该描述结合了纳米线对腔内光的MIE散落的分析表述,并描述了描述腔内光学特征模型动力学的输入输出形式主义。我们研究了描述位置依赖性参数和耗散光学耦合强度的光学机械相互作用的两个方面,以及纳米线所经历的光力力场。我们发现与最新实验实现的定量一致性。我们讨论了获取矢量特征的光力相互作用的特定现象学,因为纳米线可以沿两个横向方向相同振动:光力学力场呈现非零的旋转,而异常的正腔移动则预期。利用较大的Kerr样非线性性,这项工作通过纳米孔孔子在量子光学领域打开了视角,例如,宽带挤压接近单个光子水平的宽带挤压。
In the field of cavity nano-optomechanics, the nanoresonator-in-the-middle approach consists in inserting a sub-wavelength sized deformable resonator, here a nanowire, in the small mode volume of a fiber microcavity. Internal resonances in the nanowire enhance the light nanowire interaction which provide giant coupling strengthes -- sufficient to enter the single photon regime of cavity optomechanics -- at the condition to precisely position the nanowire within the cavity field. Here we expose a theoretical description that combines an analytical formulation of the Mie-scattering of the intracavity light by the nanowire and an input-output formalism describing the dynamics of the intracavity optical eigenmodes. We investigate both facets of the optomechanical interaction describing the position dependent parametric and dissipative optomechanical coupling strengths, as well as the optomechanical force field experienced by the nanowire. We find a quantitative agreement with recent experimental realization. We discuss the specific phenomenology of the optomechanical interaction which acquires a vectorial character since the nanowire can identically vibrate along both transverse directions: the optomechanical force field presents a non-zero rotational, while anomalous positive cavity shifts are expected. Taking advantage of the large Kerr-like non linearity, this work opens perspectives in the field of quantum optics with nanoresonator with for instance broadband squeezing of the outgoing cavity fields close to the single photon level.