论文标题

汇总信息无可能推理

Pooling information in likelihood-free inference

论文作者

Frazier, David T., Drovandi, Christopher, Kock, Lucas, Nott, David J.

论文摘要

无似然推理(LFI)方法(例如近似贝叶斯计算)已成为在复杂模型中进行推断的司空见惯。许多方法基于摘要统计或综合数据得出的差异。但是,确定用于构建后部的摘要统计或差异仍然是一个挑战性的问题,无论是实际上还是理论上。我们提出了一个新的汇总后部,与其依靠摘要的单个向量进行推理,以最佳结合了来自多个LFI后代的推论。这种合并的方法消除了选择摘要的单个向量甚至特定LFI算法的需求。我们的方法直接实施并避免执行涉及所有摘要统计数据的高维LFI分析。我们为根据渐近频繁的风险提高了合并后平均值的性能的理论保证,并证明了该方法在许多基准示例中的有效性。

Likelihood-free inference (LFI) methods, such as approximate Bayesian computation, have become commonplace for conducting inference in complex models. Many approaches are based on summary statistics or discrepancies derived from synthetic data. However, determining which summary statistics or discrepancies to use for constructing the posterior remains a challenging question, both practically and theoretically. Instead of relying on a single vector of summaries for inference, we propose a new pooled posterior that optimally combines inferences from multiple LFI posteriors. This pooled approach eliminates the need to select a single vector of summaries or even a specific LFI algorithm. Our approach is straightforward to implement and avoids performing a high-dimensional LFI analysis involving all summary statistics. We give theoretical guarantees for the improved performance of the pooled posterior mean in terms of asymptotic frequentist risk and demonstrate the effectiveness of the approach in a number of benchmark examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源