论文标题

使用知识蒸馏方法的单图像校准

Single image calibration using knowledge distillation approaches

论文作者

Amer, Khadidja Ould, Hadjerci, Oussama, Hedjazi, Mohamed Abbas, Letienne, Antoine

论文摘要

尽管最近基于深度学习的校准方法可以预测单个图像的外在和内在摄像机参数,但它们的概括仍然受训练数据样本的数量和分布的限制。巨大的计算和空间需求阻止了卷积神经网络(CNN)在资源受限的环境中实现。这项挑战促使我们通过训练新数据逐步学习CNN,同时保持先前学习的数据的性能。我们的方法基于CNN体系结构,可以使用不同的增量学习策略自动估算摄像机参数(焦距,音高和滚动),以在更新网络以进行新数据分布时保留知识。确切地说,我们通过将其损失函数修改为我们的回归问题,适应四个常见的增量学习:LWF,ICARL,LU CIR和BIC。我们在两个包含299008室内和室外图像的数据集上进行评估。实验结果很重要,并指示哪种方法更好地用于摄像机校准估计。

Although recent deep learning-based calibration methods can predict extrinsic and intrinsic camera parameters from a single image, their generalization remains limited by the number and distribution of training data samples. The huge computational and space requirement prevents convolutional neural networks (CNNs) from being implemented in resource-constrained environments. This challenge motivated us to learn a CNN gradually, by training new data while maintaining performance on previously learned data. Our approach builds upon a CNN architecture to automatically estimate camera parameters (focal length, pitch, and roll) using different incremental learning strategies to preserve knowledge when updating the network for new data distributions. Precisely, we adapt four common incremental learning, namely: LwF , iCaRL, LU CIR, and BiC by modifying their loss functions to our regression problem. We evaluate on two datasets containing 299008 indoor and outdoor images. Experiment results were significant and indicated which method was better for the camera calibration estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源