论文标题
次高斯实际代数最大曲线的指数稀疏结果
An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves
论文作者
论文摘要
我们证明,与平滑弯曲的充足线束的最大真实代数曲线与高斯随机实际圆锥形截面相关,这是指数的罕见。这概括了Gayet和Welschinger \ cite {gw}的结果,在高斯案例中证明了正面弯曲的真实全态线束。
We prove that maximal real algebraic curves associated with sub-Gaussian random real holomorphic sections of a smoothly curved ample line bundle are exponentially rare. This generalizes the result of Gayet and Welschinger \cite{GW} proved in the Gaussian case for positively curved real holomorphic line bundles.