论文标题

次高斯实际代数最大曲线的指数稀疏结果

An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves

论文作者

Bayraktar, Turgay, Karaca, Emel

论文摘要

我们证明,与平滑弯曲的充足线束的最大真实代数曲线与高斯随机实际圆锥形截面相关,这是指数的罕见。这概括了Gayet和Welschinger \ cite {gw}的结果,在高斯案例中证明了正面弯曲的真实全态线束。

We prove that maximal real algebraic curves associated with sub-Gaussian random real holomorphic sections of a smoothly curved ample line bundle are exponentially rare. This generalizes the result of Gayet and Welschinger \cite{GW} proved in the Gaussian case for positively curved real holomorphic line bundles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源