论文标题

在具有代数腐烂密度相互作用的玻色晶晶格模型中的晶相的系统分析

Systematic Analysis of Crystalline Phases in Bosonic Lattice Models with Algebraically Decaying Density-Density Interactions

论文作者

Koziol, J. A., Duft, A., Morigi, G., Schmidt, K. P.

论文摘要

我们提出了一种一般方法,以分析具有代数衰减密度密度在任意晶格上的剂量晶格模型中的对角线排序模式。关键思想是在特定程度上系统地搜索晶格所有单元单元的能量最佳顺序。使用重新召集的耦合,我们使用有限单位单元格评估了热力学极限中有序模式的能量。我们将提出的方法应用于三角晶格的扩展Bose-Hubbard模型的原子限制,$ f = 1/2 $和$ f = 1 $。我们研究了三角形晶格上抗铁磁长期ISING模型的地面特性,并确定一个六倍退化的平态相,是有限衰减指数的基态。我们还探究了描述Rydberg原子阵列的Fendley-Sengupta-Sachdev模型的经典限制。我们专注于将原子放置在Kagome晶格的位置或链接上的布置。 \更改{我们的方法提供了一个通用框架,以治疗由长期相互作用产生的cristalline结构。

We propose a general approach to analyse diagonal ordering patterns in bosonic lattice models with algebraically decaying density-density interactions on arbitrary lattices. The key idea is a systematic search for the energetically best order on all unit cells of the lattice up to a given extent. Using resummed couplings we evaluate the energy of the ordering patterns in the thermodynamic limit using finite unit cells. We apply the proposed approach to the atomic limit of the extended Bose-Hubbard model on the triangular lattice at fillings $f=1/2$ and $f=1$. We investigate the ground-state properties of the antiferromagnetic long-range Ising model on the triangular lattice and determine a six-fold degenerate plain-stripe phase to be the ground state for finite decay exponents. We also probe the classical limit of the Fendley-Sengupta-Sachdev model describing Rydberg atom arrays. We focus on arrangements where the atoms are placed on the sites or links of the Kagome lattice. \changed{Our method provides a general framework to treat cristalline structures resulting from long-range interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源