论文标题
$ l^{p}([0,1])中的sublinear,单调和强烈翻译的操作员的定量korovkin定理
Quantitative Korovkin theorems for sublinear, monotone and strongly translatable operators in $L^{p}([0, 1]), 1\le p \le +\infty$
论文作者
论文摘要
通过扩展$ l^{p}([[0,1])的正面定量近似结果,1 \ le p \ le p \ le p \ le p \ le +\ le +\ in +\ infty $在1978年以及1983年的Swetits and Wood在1983年,以更一般的统一,单调和订单的订单,在本文中,我们在本次订购中均订购了更一般的订单,并在本文中获得了次要订单,并在本文中估计,该订单的次数估计,该订单是在纸上估计的。平滑度,在Korovkin型定理中。包括在具体示例中的应用,并提出了有关sublinear,单调和强烈可翻译运算符的插值理论的一个开放问题。
By extending the classical quantitative approximation results for positive and linear operators in $L^{p}([0, 1]), 1\le p \le +\infty$ of Berens and DeVore in 1978 and of Swetits and Wood in 1983 to the more general case of sublinear, monotone and strongly translatable operators, in this paper we obtain quantitative estimates in terms of the second order and third order moduli of smoothness, in Korovkin type theorems. Applications to concrete examples are included and an open question concerning interpolation theory for sublinear, monotone and strongly translatable operators is raised.