论文标题

类曲线型代码

Groupoid Toric Codes

论文作者

Padmanabhan, Pramod, Jana, Indrajit

论文摘要

在定向的二维晶格上,可以将复曲面代码构造为有限基团的规格理论。在这里,我们与属于群体的量规场构建类似的模型,这是每个形态都有逆的类别。我们表明,可以为任意群体构建一个一致的系统,并分析最简单的示例,该示例可以看作是Abelian $ \ Mathbb {z} _2 _2 $ toric代码的类似物。我们发现几种具有类似分裂的特征的确切可解决的模型,其中包括广泛的基态退化和激发,这些型和激励是固定的或具有限制的迁移率。在我们详细研究的可能性中,基态退化为$ 2 \ times 2^{n_v} $,其中$ n_v $是晶格中的顶点数。这种退化的起源可以追溯到在可缩度和非缩短循环中支持的循环操作员。特别是,沿着圆环的相同方向不同的不同非收集回路导致不同的基态。这是可以在此代码中编码的逻辑Qubits数量的指数增加。此外,该系统中的面部激发是被剥夺的,可以随意移动而无需沿晶格的某些方向进行能源成本,而在某些其他方向上,它们的运动会造成能源成本。这对有助于基态堕落的循环操作员的类型限制。顶点激发是不动的。结果还扩展到Abelian $ \ Mathbb {z} _n $ toric代码的群体类似物。

The toric code can be constructed as a gauge theory of finite groups on oriented two dimensional lattices. Here we construct analogous models with the gauge fields belonging to groupoids, which are categories where every morphism has an inverse. We show that a consistent system can be constructed for an arbitrary groupoid and analyze the simplest example that can be seen as the analog of the Abelian $\mathbb{Z}_2$ toric code. We find several exactly solvable models that have fracton-like features which include an extensive ground state degeneracy and excitations that are either immobile or have restricted mobility. Among the possibilities we study in detail the one where the ground state degeneracy scales as $2\times 2^{N_v}$, where $N_v$ is the number of vertices in the lattice. The origin of this degeneracy can be traced to loop operators supported on both contractible and non-contractible loops. In particular, different non-contractible loops, along the same direction on a torus, result in different ground states. This is an exponential increase in the number of logical qubits that can be encoded in this code. Moreover the face excitations in this system are deconfined, free to move without an energy cost along certain directions of the lattice, whereas in certain other directions their movement incurs an energy cost. This places a restriction on the types of loop operators that contribute to the ground state degeneracy. The vertex excitations are immobile. The results are also extended to the groupoid analogs of Abelian $\mathbb{Z}_N$ toric codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源