论文标题

域自适应语义细分的几何感知网络

Geometry-Aware Network for Domain Adaptive Semantic Segmentation

论文作者

Liao, Yinghong, Zhou, Wending, Yan, Xu, Cui, Shuguang, Yu, Yizhou, Li, Zhen

论文摘要

测量和减轻合成(源)和真实场景(目标)数据之间的差异是域自适应语义分割的核心问题。尽管最近的作品在源域中引入了深度信息以加强几何和语义知识转移,但仅基于2D估计的深度,它们无法提取对象的内在3D信息,包括位置和形状。在这项工作中,我们提出了一个新型的几何感知网络(GANDA),利用更紧凑的3D几何点云表示来缩小域间隙。特别是,我们首先利用来自源域的辅助深度监督来获得目标域中的深度预测,以完成结构文本分离。除了深度估计之外,我们在RGB-D图像产生的点云上明确利用3D拓扑,以在目标域中进一步的坐标颜色分离和伪标记。此外,为了改善目标域中的2D分类器,我们从源到目标进行域 - 不变的几何适应性,并统一2D语义和3D几何分割会导致两个域。请注意,我们的Ganda在任何现有的UDA框架中都是插件。定性和定量结果表明,我们的模型在GTA5-> CityScapes和Synthia-> CityScapes上的最先进。

Measuring and alleviating the discrepancies between the synthetic (source) and real scene (target) data is the core issue for domain adaptive semantic segmentation. Though recent works have introduced depth information in the source domain to reinforce the geometric and semantic knowledge transfer, they cannot extract the intrinsic 3D information of objects, including positions and shapes, merely based on 2D estimated depth. In this work, we propose a novel Geometry-Aware Network for Domain Adaptation (GANDA), leveraging more compact 3D geometric point cloud representations to shrink the domain gaps. In particular, we first utilize the auxiliary depth supervision from the source domain to obtain the depth prediction in the target domain to accomplish structure-texture disentanglement. Beyond depth estimation, we explicitly exploit 3D topology on the point clouds generated from RGB-D images for further coordinate-color disentanglement and pseudo-labels refinement in the target domain. Moreover, to improve the 2D classifier in the target domain, we perform domain-invariant geometric adaptation from source to target and unify the 2D semantic and 3D geometric segmentation results in two domains. Note that our GANDA is plug-and-play in any existing UDA framework. Qualitative and quantitative results demonstrate that our model outperforms state-of-the-arts on GTA5->Cityscapes and SYNTHIA->Cityscapes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源