论文标题

INRGN:用于多转响应选择的隐式关系推理图网络

IRRGN: An Implicit Relational Reasoning Graph Network for Multi-turn Response Selection

论文作者

Deng, Jingcheng, Dai, Hengwei, Guo, Xuewei, Ju, Yuanchen, Peng, Wei

论文摘要

多转向对话中响应选择的任务是从所有候选人那里找到最佳选择。为了提高模型的推理能力,以前的研究更加关注使用明确的算法来对依赖性进行建模,这些话语是确定性,有限和僵化的话语之间的依赖性。此外,很少有研究考虑推理前后选择之间的差异。在本文中,我们提出了一个隐含的关系推理图网络来解决这些问题,该问题包括话语关系推理器(URR)和选项双重比较器(ODC)。 URR的目的是在话语以及话语和选项之间隐式提取依赖性,并通过关系图卷积网络进行推理。 ODC专注于通过双重比较来感知选项之间的差异,这可以消除噪声选项的干扰。两个多转向对话推理基准数据集的实验结果相互和相互+表明,我们的方法显着改善了四种预审前的语言模型的基线,并实现了最先进的性能。该模型在共同数据集上首次超过了人类的绩效。

The task of response selection in multi-turn dialogue is to find the best option from all candidates. In order to improve the reasoning ability of the model, previous studies pay more attention to using explicit algorithms to model the dependencies between utterances, which are deterministic, limited and inflexible. In addition, few studies consider differences between the options before and after reasoning. In this paper, we propose an Implicit Relational Reasoning Graph Network to address these issues, which consists of the Utterance Relational Reasoner (URR) and the Option Dual Comparator (ODC). URR aims to implicitly extract dependencies between utterances, as well as utterances and options, and make reasoning with relational graph convolutional networks. ODC focuses on perceiving the difference between the options through dual comparison, which can eliminate the interference of the noise options. Experimental results on two multi-turn dialogue reasoning benchmark datasets MuTual and MuTual+ show that our method significantly improves the baseline of four pretrained language models and achieves state-of-the-art performance. The model surpasses human performance for the first time on the MuTual dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源