论文标题

带有蒸馏的Bern2和Kazu框架的企业的生物医学NER

Biomedical NER for the Enterprise with Distillated BERN2 and the Kazu Framework

论文作者

Yoon, Wonjin, Jackson, Richard, Ford, Elliot, Poroshin, Vladimir, Kang, Jaewoo

论文摘要

为了协助药物发现/开发过程,制药公司经常应用生物医学NER和链接技术,而不是内部和公共语料库。对Bionlp领域的数十年研究产生了大量算法,系统和数据集。但是,我们的经验是,没有一个开源系统满足现代制药公司的所有要求。在这项工作中,我们根据我们对行业的经验来描述这些要求,并展示了Kazu,这是一个高度可扩展的,可扩展的开源框架,旨在为制药领域提供Bionlp。 Kazu是围绕BERN2 NER模型(TinyBern2)的计算高效版本建造的,随后将其他几种Bionlp技术包装到一个连贯的系统中。 Kazu框架是开源的:https://github.com/astrazeneca/kazu

In order to assist the drug discovery/development process, pharmaceutical companies often apply biomedical NER and linking techniques over internal and public corpora. Decades of study of the field of BioNLP has produced a plethora of algorithms, systems and datasets. However, our experience has been that no single open source system meets all the requirements of a modern pharmaceutical company. In this work, we describe these requirements according to our experience of the industry, and present Kazu, a highly extensible, scalable open source framework designed to support BioNLP for the pharmaceutical sector. Kazu is a built around a computationally efficient version of the BERN2 NER model (TinyBERN2), and subsequently wraps several other BioNLP technologies into one coherent system. KAZU framework is open-sourced: https://github.com/AstraZeneca/KAZU

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源