论文标题
在裂纹尖端解决应力状态以阐明弹性骨折的性质
Resolving stress state at crack tip to elucidate nature of elastomeric fracture
论文作者
论文摘要
基于基于极化光学显微镜(StR-POM)的裂纹尖端应力场的空间分辨测量值,弹性分裂的应力分析方法可发现新见解。与线性弹性断裂力学(LEFM)的标准描述相比,我们显示了新的现象学。首先,str-pom的测量表明,应力饱和区的出现,其尺寸R_SS独立于应力强度因子K。该弹性区域是塑料区域,其大小会随K的尺寸四范围。不存在应力差异使我们能够测量尖端压力S_TIP在骨折的骨折时,被识别为固有的材料强度,即固有的材料强度,即s_tip(s_tip(f)= s_tip(f)= s_tip(f)。我们能够解释为什么LEFM很好地适用于弹性体,即为什么韧性(作为关键能量释放速率GC或临界应力强度因子KC KC)是材料常数,并且我们已经确定了确定韧性大小的参数。其次,流行的Rivlin- Thomas Energy平衡描述纯剪切中的弹性骨折的弹性骨折已基于Str-Pom观测值获得了新鲜和不同的解释,这表明在切割尖端的应力积累以标本高度H0明确缩放,从而导致GC = WCH0恒定。第三,Str-POM观察结果揭示了弹性骨折是如何在公共KC上发生的,独立于试样厚度。在给定的载荷下,由于切割尖端时应力较高,因此较厚的样品的应力积累较弱,并且观察到骨折在较厚标本的较低尖端应力下发生。
Based on spatial-temporal resolved measurements of the stress field at crack tip based on polarized optical microscopy (str-POM), the stress analysis approach to elastomeric fracture uncovers new insights. We show new phenomenology in contrast to the standard description of linear elastic fracture mechanics (LEFM). First, str-POM measurements show emergence of a stress saturation zone whose dimension r_ss is independent of the stress intensity factor K. This elastic zone is plastic zone whose size would scale quadratically with K. The absence of stress divergence allows us to measure tip stress s_tip at the onset of fracture, identified as inherent material strength, i.e., s_tip(F) = s_F(inh). We are able to explain why LEFM applies well to elastomers, i.e., why toughness (either given as critical energy release rate Gc or critical stress intensity factor Kc) is a material constant, and we have identified parameters that determine the magnitude of toughness. Second, the popular Rivlin-Thomas energy balance description of elastomeric fracture in pure shear has acquired a fresh and different interpretation based on str-POM observations, which show that the stress buildup at cut tip explicitly scales with specimen height h0, leading to Gc = wch0 being constant. Third, the str-POM observations reveal how elastomeric fracture occurs at a common Kc independent of specimen thickness. At a given load there is weaker stress buildup for a thicker specimen due to greater stress saturation at cut tip, and fracture is observed to occur at lower tip stress for a thicker specimen.