论文标题

非确定性近似fixpoint理论及其在分离逻辑编程中的应用

Non-Deterministic Approximation Fixpoint Theory and Its Application in Disjunctive Logic Programming

论文作者

Heyninck, Jesse, Arieli, Ofer, Bogaerts, Bart

论文摘要

近似固定点理论(AFT)是研究非单调逻辑语义的抽象和一般代数框架。它提供了针对非单调推理的不同形式主义语义的统一研究,例如逻辑编程,默认逻辑和自身皮病逻辑。在本文中,我们将其扩展到处理允许处理无限信息的非确定性构造,例如通过析取公式。这是通过将AFT的主要结构和相应结果推广到非确定性运算符的,其范围是元素的集合,而不是单个元素。这种概括的适用性和实用性在分离逻辑编程的背景下说明了。

Approximation fixpoint theory (AFT) is an abstract and general algebraic framework for studying the semantics of nonmonotonic logics. It provides a unifying study of the semantics of different formalisms for nonmonotonic reasoning, such as logic programming, default logic and autoepistemic logic. In this paper, we extend AFT to dealing with non-deterministic constructs that allow to handle indefinite information, represented e.g. by disjunctive formulas. This is done by generalizing the main constructions and corresponding results of AFT to non-deterministic operators, whose ranges are sets of elements rather than single elements. The applicability and usefulness of this generalization is illustrated in the context of disjunctive logic programming.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源