论文标题

基于概率 - 逻辑的常识性表示框架,用于用多个先例建模推断和不同的可能性

A Probabilistic-Logic based Commonsense Representation Framework for Modelling Inferences with Multiple Antecedents and Varying Likelihoods

论文作者

Jaiswal, Shantanu, Yan, Liu, Choi, Dongkyu, Kwok, Kenneth

论文摘要

常识性知识图(CKG)是用于建造可以在文本或环境输入上“理性”的机器的重要资源,并推断出超出感知的推论。尽管当前的CKG编码了许多概念的世界知识,并已被有效地用于将常识纳入神经模型中,但它们主要编码声明性或单条件推论知识,并假设所有概念信念具有相同的可能性。此外,这些CKG利用一组有限的关系集合在概念上共享,缺乏连贯的知识组织结构,从而导致冗余以及跨越较大的知识图的稀疏性。因此,当今的CKG虽然对第一级推理有用,但并不能充分捕获更深层次的常识性推论,这可能会受到多种情境或情境因素的细微差别和影响。 因此,在这项工作中,我们研究了如何通过 - (i)利用概率逻辑表示方案更好地表示常识性知识来对复合推理知识进行建模,并代表具有不同可能性的概念信念,以及(ii)将层次概念的本体学纳入不同的概念概念,并在不同的概念层面上识别出显着的概念和组织不同的概念信念。我们由此产生的知识表示框架可以编码更广泛的世界知识,并使用扎根概念和自由文本短语灵活地表示信念。结果,该框架既可以用作传统的自由文本知识图,又可以用作基于逻辑的推理系统更适合神经符号应用。我们描述了如何通过人群来源和专家注释来扩展Primenet知识基础,并展示了其针对更可解释的基于段落的语义解析和问题回答的应用。

Commonsense knowledge-graphs (CKGs) are important resources towards building machines that can 'reason' on text or environmental inputs and make inferences beyond perception. While current CKGs encode world knowledge for a large number of concepts and have been effectively utilized for incorporating commonsense in neural models, they primarily encode declarative or single-condition inferential knowledge and assume all conceptual beliefs to have the same likelihood. Further, these CKGs utilize a limited set of relations shared across concepts and lack a coherent knowledge organization structure resulting in redundancies as well as sparsity across the larger knowledge graph. Consequently, today's CKGs, while useful for a first level of reasoning, do not adequately capture deeper human-level commonsense inferences which can be more nuanced and influenced by multiple contextual or situational factors. Accordingly, in this work, we study how commonsense knowledge can be better represented by -- (i) utilizing a probabilistic logic representation scheme to model composite inferential knowledge and represent conceptual beliefs with varying likelihoods and (ii) incorporating a hierarchical conceptual ontology to identify salient concept-relevant relations and organize beliefs at different conceptual levels. Our resulting knowledge representation framework can encode a wider variety of world knowledge and represent beliefs flexibly using grounded concepts as well as free-text phrases. As a result, the framework can be utilized as both a traditional free-text knowledge graph and a grounded logic-based inference system more suitable for neuro-symbolic applications. We describe how we extend the PrimeNet knowledge base with our framework through crowd-sourcing and expert-annotation, and demonstrate its application for more interpretable passage-based semantic parsing and question answering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源