论文标题

朝着强大的诊断:一个围轮的注意力保留对抗防御的covid-19检测

Toward Robust Diagnosis: A Contour Attention Preserving Adversarial Defense for COVID-19 Detection

论文作者

Xiang, Kun, Zhang, Xing, She, Jinwen, Liu, Jinpeng, Wang, Haohan, Deng, Shiqi, Jiang, Shancheng

论文摘要

由于Covid-19大流行对全球医疗保健系统施加了压力,基于计算机断层扫描的AI诊断系统已成为早期诊断的可持续解决方案。但是,对抗性扰动下的模型脆弱性阻碍了其在实际情况下的部署。现有的对抗训练策略很难将其推广到受复杂的医学纹理特征挑战的医学成像领域。为了克服这一挑战,我们提出了基于肺腔边缘提取的CONTOUR注意力(CAP)方法。轮廓先验的特征通过参数正则化注入注意力层,我们通过混合距离度量优化了强大的经验风险。然后,我们引入了一个新的跨国CT扫描数据集,以评估分布偏移的对抗性鲁棒性的概括能力。实验结果表明,所提出的方法在多个对抗防御和泛化任务中实现了最先进的表现。代码和数据集可在https://github.com/quinn777/cap上获得。

As the COVID-19 pandemic puts pressure on healthcare systems worldwide, the computed tomography image based AI diagnostic system has become a sustainable solution for early diagnosis. However, the model-wise vulnerability under adversarial perturbation hinders its deployment in practical situation. The existing adversarial training strategies are difficult to generalized into medical imaging field challenged by complex medical texture features. To overcome this challenge, we propose a Contour Attention Preserving (CAP) method based on lung cavity edge extraction. The contour prior features are injected to attention layer via a parameter regularization and we optimize the robust empirical risk with hybrid distance metric. We then introduce a new cross-nation CT scan dataset to evaluate the generalization capability of the adversarial robustness under distribution shift. Experimental results indicate that the proposed method achieves state-of-the-art performance in multiple adversarial defense and generalization tasks. The code and dataset are available at https://github.com/Quinn777/CAP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源