论文标题

使用自动差异化,通过Hückel理论优化分子设计和参数优化

Inverse molecular design and parameter optimization with Hückel theory using automatic differentiation

论文作者

Vargas-Hernández, R. A., Jorner, K., Pollice, R., Aspuru-Guzik, A.

论文摘要

半经验量子化学最近在高通量虚拟筛选和机器学习中应用了文艺复兴。在化学中仍然广泛使用的最简单的半经验模型是Hückel的$π$ - 电子分子轨道理论。在这项工作中,我们基于预先存在的numpy版本的有限修改,使用与JAX框架的可区分编程实现了Hückel程序。自动差异性Hückel代码分别基于对激发能和分子极化的模型参数的有效优化,基于密度功能理论模拟的100个数据点。特别是,通过自动差异的极化性的可容易计算(一种二阶导数)显示了可区分编程的潜力,即绕过对分析表达式的数字分化或衍生的需求。最后,我们采用基于梯度的原子身份的优化,用于具有靶向轨道能隙和极化能力的有机电子材料的反设计。使用基于标准梯度的优化算法,在短短15次迭代后获得了优化的结构。

Semi-empirical quantum chemistry has recently seen a renaissance with applications in high-throughput virtual screening and machine learning. The simplest semi-empirical model still in widespread use in chemistry is Hückel's $π$-electron molecular orbital theory. In this work, we implemented a Hückel program using differentiable programming with the JAX framework, based on limited modifications of a pre-existing NumPy version. The auto-differentiable Hückel code enabled efficient gradient-based optimization of model parameters tuned for excitation energies and molecular polarizabilities, respectively, based on as few as 100 data points from density functional theory simulations. In particular, the facile computation of the polarizability, a second-order derivative, via auto-differentiation shows the potential of differentiable programming to bypass the need for numeric differentiation or derivation of analytical expressions. Finally, we employ gradient-based optimization of atom identity for inverse design of organic electronic materials with targeted orbital energy gaps and polarizabilities. Optimized structures are obtained after as little as 15 iterations, using standard gradient-based optimization algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源