论文标题

多词的多模式学习:一项调查

Multimodal Learning for Multi-Omics: A Survey

论文作者

Tabakhi, Sina, Suvon, Mohammod Naimul Islam, Ahadian, Pegah, Lu, Haiping

论文摘要

借助高级成像,测序和分析技术,多个OMIC数据变得越来越可用,并为许多医疗保健应用(例如癌症诊断和治疗)持希望。用于综合多摩学分析的多模式学习可以帮助研究人员和从业者深入了解人类疾病并改善临床决策。但是,一些挑战阻碍了该领域的开发,包括易于访问的开源工具的可用性。该调查旨在从几个新角度提供数据挑战,融合方法,数据集和软件工具的最新概述。我们确定并研究各种OMIC数据挑战,可以帮助我们更好地了解该领域。我们全面地对融合方法进行了分类,以涵盖该领域的现有方法。我们收集现有的开源工具,以促进其更广泛的利用和开发。我们探讨了广泛的OMIC数据模式和可访问数据集的列表。最后,我们总结了未来的方向,这些方向可能有可能解决现有差距,并回答迫切需要推进多模式学习以进行多摩根数据分析。

With advanced imaging, sequencing, and profiling technologies, multiple omics data become increasingly available and hold promises for many healthcare applications such as cancer diagnosis and treatment. Multimodal learning for integrative multi-omics analysis can help researchers and practitioners gain deep insights into human diseases and improve clinical decisions. However, several challenges are hindering the development in this area, including the availability of easily accessible open-source tools. This survey aims to provide an up-to-date overview of the data challenges, fusion approaches, datasets, and software tools from several new perspectives. We identify and investigate various omics data challenges that can help us understand the field better. We categorize fusion approaches comprehensively to cover existing methods in this area. We collect existing open-source tools to facilitate their broader utilization and development. We explore a broad range of omics data modalities and a list of accessible datasets. Finally, we summarize future directions that can potentially address existing gaps and answer the pressing need to advance multimodal learning for multi-omics data analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源