论文标题

关于复杂网络中量子链接预测的复杂性

On the complexity of quantum link prediction in complex networks

论文作者

Moutinho, João P., Magano, Duarte, Coutinho, Bruno

论文摘要

链接预测方法使用已知网络数据中的模式推断可能丢失了哪些连接。先前的工作表明,连续时间量子步行可用于表示基于路径的链路预测,我们在这里进一步研究以开发更优化的量子算法。使用采样框架进行链接预测,我们分析了对生成一定数量预测样本所需的输入网络的查询访问。考虑使用邻接矩阵的幂以及我们提出的基于路径链路预测的量子算法的质量算法,考虑到这两种著名的经典路径算法,我们认为对$ n $的依赖性有多项式量子优势,网络中的节点的数量。我们进一步认为,算法的复杂性虽然在$ n $中为$ n $,但受到对网络邻接矩阵进行量子模拟的复杂性的限制,这可能被证明是一般网络科学量子算法的重要问题。

Link prediction methods use patterns in known network data to infer which connections may be missing. Previous work has shown that continuous-time quantum walks can be used to represent path-based link prediction, which we further study here to develop a more optimized quantum algorithm. Using a sampling framework for link prediction, we analyze the query access to the input network required to produce a certain number of prediction samples. Considering both well-known classical path-based algorithms using powers of the adjacency matrix as well as our proposed quantum algorithm for path-based link prediction, we argue that there is a polynomial quantum advantage on the dependence on $N$, the number of nodes in the network. We further argue that the complexity of our algorithm, although sub-linear in $N$, is limited by the complexity of performing a quantum simulation of the network's adjacency matrix, which may prove to be an important problem in the development of quantum algorithms for network science in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源