论文标题

关于基础模型的力量

On the Power of Foundation Models

论文作者

Yuan, Yang

论文摘要

凭借无限的许多高质量数据点,无限的计算能力,具有完美训练算法的无限大型基础模型,并确保在借口任务上保证零概括错误,该模型是否可以用于所有内容?现有的代表性理论,优化或概括不能回答这个问题,因为他们主要研究的问题在这里被认为是不存在的。在本文中,我们表明类别理论提供了有力的机械来回答这个问题。我们已经证明了三个结果。第一个限制了基于及时的学习的力量,称该模型可以在且仅当任务代表时使用提示解决下游任务。第二个说,微调没有此限制,因为具有最小必需功率的基础模型(对对称性)可以从理论上解决由借口任务定义的类别,通过微调和足够的资源来定义的类别的下游任务。我们的最终结果可以看作是一种新型的概括定理,表明基础模型可以使用来自源类别(例如文本)的结构信息从目标类别(例如图像)产生看不见的对象。在此过程中,我们为监督和自我监督的学习提供了一个分类框架,这可能具有独立的兴趣。

With infinitely many high-quality data points, infinite computational power, an infinitely large foundation model with a perfect training algorithm and guaranteed zero generalization error on the pretext task, can the model be used for everything? This question cannot be answered by the existing theory of representation, optimization or generalization, because the issues they mainly investigate are assumed to be nonexistent here. In this paper, we show that category theory provides powerful machinery to answer this question. We have proved three results. The first one limits the power of prompt-based learning, saying that the model can solve a downstream task with prompts if and only if the task is representable. The second one says fine tuning does not have this limit, as a foundation model with the minimum required power (up to symmetry) can theoretically solve downstream tasks for the category defined by pretext task, with fine tuning and enough resources. Our final result can be seen as a new type of generalization theorem, showing that the foundation model can generate unseen objects from the target category (e.g., images) using the structural information from the source category (e.g., texts). Along the way, we provide a categorical framework for supervised and self-supervised learning, which might be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源