论文标题

非趋势$ h^p $函数的准形式变形和Hummel-Scheinberg-Zalcman猜想

Quasiconformal deformations of nonvanishing $H^p$ functions and the Hummel-Scheinberg-Zalcman conjecture

论文作者

Krushkal, Samuel L.

论文摘要

最近,作者证明了1977年的Hummel-Scheinberg-Zalcman对所有$ h^p $ functions的猜想是所有$ p = 2M,m \ in \ mathbb {n} $,即Hilbertian Hardy Hardy Spaces $ H^{2M} $的全部$ h^p $ functions。结果,这也暗示了Krzyz猜想的证明,用于起源于这个方向的有限的非逐步函数。 在本文中,我们用$ p \ ge 2 $解决了所有空间$ h^p $的问题。

Recently the author proved that the 1977 Hummel-Scheinberg-Zalcman conjecture on coefficients of nonvanishing $H^p$ functions is true for all $p = 2m, m \in \mathbb{N}$, i.e., for the Hilbertian Hardy spaces $H^{2m}$. As a consequence, this also implies a proof of the Krzyz conjecture for bounded nonvanishing functions which originated this direction. In the present paper, we solve the problem for all spaces $H^p$ with $p \ge 2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源