论文标题

可区分的用户模型

Differentiable User Models

论文作者

Hämäläinen, Alex, Çelikok, Mustafa Mert, Kaski, Samuel

论文摘要

概率用户建模对于在循环中的人类无处不在的情况下构建机器学习系统至关重要。但是,现代高级用户模型通常被设计为认知行为模拟器,与现代机器学习管道不兼容,对于大多数实用应用而言,计算效果不佳。我们通过引入广泛的可区分替代物来解决这个问题,以绕过该计算瓶颈;代替代人可以使用现代认知模型来计算有效的推断。我们通过实验表明,建模功能可与唯一可用的解决方案(现有的无可能推理方法)相媲美,并且可以使用适合在线应用程序的计算成本来实现。最后,我们演示了AI辅助因子现在如何在菜单搜索任务中使用认知模型进行在线互动,该菜单搜索任务迄今需要在交互过程中进行数小时的计算。

Probabilistic user modeling is essential for building machine learning systems in the ubiquitous cases with humans in the loop. However, modern advanced user models, often designed as cognitive behavior simulators, are incompatible with modern machine learning pipelines and computationally prohibitive for most practical applications. We address this problem by introducing widely-applicable differentiable surrogates for bypassing this computational bottleneck; the surrogates enable computationally efficient inference with modern cognitive models. We show experimentally that modeling capabilities comparable to the only available solution, existing likelihood-free inference methods, are achievable with a computational cost suitable for online applications. Finally, we demonstrate how AI-assistants can now use cognitive models for online interaction in a menu-search task, which has so far required hours of computation during interaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源