论文标题

哪种快捷方式解决了回答模型更喜欢学习?

Which Shortcut Solution Do Question Answering Models Prefer to Learn?

论文作者

Shinoda, Kazutoshi, Sugawara, Saku, Aizawa, Akiko

论文摘要

用于阅读理解的问题回答(QA)模型倾向于学习快捷解决方案,而不是QA数据集打算的解决方案。学习了快捷解决方案的质量检查模型可以在快捷方式有效的捷径中实现人级的性能,但是这些相同的行为在反缩短示例上降低了概括的潜力,而快捷方式无效。已经提出了各种方法来减轻此问题,但它们并未完全考虑到捷径的特征。我们假设快捷方式的可学习性,即学习捷径有多容易,对缓解问题很有用。因此,我们首先检查了提取性和多项选择质量质量质量检查数据集上代表性快捷方式的可学习性。使用有偏见的训练集进行的行为测试表明,优先学习利用答案位置和单词标签相关性的快捷方式分别用于提取性和多项选择质量质量质量质量。我们发现,捷径越容易学习,损失景观的平整和更深层次是参数空间中的快捷解决方案。我们还发现,首选快捷方式的可用性倾向于使任务从信息理论的角度更容易执行。最后,我们通过实验表明,可以利用快捷方式的可学习性来构建有效的质量检查训练集。捷径越容易学习,在快捷方式和反缩短示例上实现可比性能所需的反缩短示例的比例越小。我们声称在设计缓解方法时应考虑快捷方式的可学习性。

Question answering (QA) models for reading comprehension tend to learn shortcut solutions rather than the solutions intended by QA datasets. QA models that have learned shortcut solutions can achieve human-level performance in shortcut examples where shortcuts are valid, but these same behaviors degrade generalization potential on anti-shortcut examples where shortcuts are invalid. Various methods have been proposed to mitigate this problem, but they do not fully take the characteristics of shortcuts themselves into account. We assume that the learnability of shortcuts, i.e., how easy it is to learn a shortcut, is useful to mitigate the problem. Thus, we first examine the learnability of the representative shortcuts on extractive and multiple-choice QA datasets. Behavioral tests using biased training sets reveal that shortcuts that exploit answer positions and word-label correlations are preferentially learned for extractive and multiple-choice QA, respectively. We find that the more learnable a shortcut is, the flatter and deeper the loss landscape is around the shortcut solution in the parameter space. We also find that the availability of the preferred shortcuts tends to make the task easier to perform from an information-theoretic viewpoint. Lastly, we experimentally show that the learnability of shortcuts can be utilized to construct an effective QA training set; the more learnable a shortcut is, the smaller the proportion of anti-shortcut examples required to achieve comparable performance on shortcut and anti-shortcut examples. We claim that the learnability of shortcuts should be considered when designing mitigation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源