论文标题
从叉到镊子:一个新框架,例如分割手术仪器
From Forks to Forceps: A New Framework for Instance Segmentation of Surgical Instruments
论文作者
论文摘要
微创手术和相关应用需要在实例级别进行手术工具分类和分割。外科手术工具的外观相似,长,薄且以一定角度处理。对仪器分割的自然图像训练的最新实例分割模型的微调(SOTA)实例分割模型难以区分仪器类别。我们的研究表明,虽然边界框和分割面罩通常是准确的,但分类头会错误分类外科手术仪器的类标签。我们提出了一个新的神经网络框架,该框架将分类模块添加为现有实例细分模型的新阶段。该模块专门改善了现有模型生成的仪器口罩的分类。该模块包含多尺度面具的注意,该掩膜关注仪器区域并掩盖了分散注意力的背景功能。我们建议使用具有弧线损失的度量学习培训分类器模块,以处理手术器械的较低级别差异。我们在EDOVIS2017和EDOVIS2018的基准数据集上进行详尽的实验。我们证明,我们的方法优于所有(超过18)的SOTA方法,并在Edtovis2017 Benchmark挑战中至少提高了SOTA性能至少12分(20%),并在整个数据集中有效地概括了SOTA性能。
Minimally invasive surgeries and related applications demand surgical tool classification and segmentation at the instance level. Surgical tools are similar in appearance and are long, thin, and handled at an angle. The fine-tuning of state-of-the-art (SOTA) instance segmentation models trained on natural images for instrument segmentation has difficulty discriminating instrument classes. Our research demonstrates that while the bounding box and segmentation mask are often accurate, the classification head mis-classifies the class label of the surgical instrument. We present a new neural network framework that adds a classification module as a new stage to existing instance segmentation models. This module specializes in improving the classification of instrument masks generated by the existing model. The module comprises multi-scale mask attention, which attends to the instrument region and masks the distracting background features. We propose training our classifier module using metric learning with arc loss to handle low inter-class variance of surgical instruments. We conduct exhaustive experiments on the benchmark datasets EndoVis2017 and EndoVis2018. We demonstrate that our method outperforms all (more than 18) SOTA methods compared with, and improves the SOTA performance by at least 12 points (20%) on the EndoVis2017 benchmark challenge and generalizes effectively across the datasets.