论文标题

使用产品歧管的潜在图推理

Latent Graph Inference using Product Manifolds

论文作者

Borde, Haitz Sáez de Ocáriz, Kazi, Anees, Barbero, Federico, Liò, Pietro

论文摘要

图形神经网络通常依赖于以下假设:该图形拓扑可用于网络以及下游任务的最佳选择。潜在图推理允许模型动态地学习问题的固有图形结构,其中数据的连接模式可能无法直接访问。在这项工作中,我们概括了用于潜在图形学习的离散可区分图模块(DDGM)。原始的DDGM体系结构使用欧几里得平面来编码基于生成潜在图的潜在特征。通过将Riemannian几何形状纳入模型并生成更复杂的嵌入空间,我们可以改善潜在图推理系统的性能。特别是,我们提出了一种可计算上的方法,以产生可以编码不同结构的潜在特征的恒定曲率模型空间的产品歧管。映射到推断产品歧管上的潜在表示形式用于计算由潜在图形学习模型利用的更丰富的相似性度量,以获得优化的潜在图。此外,在训练中与其他网络参数一起训练和基于下游任务,而不是它是静态嵌入空间。我们的新方法在各种数据集上进行了测试,并且优于原始DDGM模型。

Graph Neural Networks usually rely on the assumption that the graph topology is available to the network as well as optimal for the downstream task. Latent graph inference allows models to dynamically learn the intrinsic graph structure of problems where the connectivity patterns of data may not be directly accessible. In this work, we generalize the discrete Differentiable Graph Module (dDGM) for latent graph learning. The original dDGM architecture used the Euclidean plane to encode latent features based on which the latent graphs were generated. By incorporating Riemannian geometry into the model and generating more complex embedding spaces, we can improve the performance of the latent graph inference system. In particular, we propose a computationally tractable approach to produce product manifolds of constant curvature model spaces that can encode latent features of varying structure. The latent representations mapped onto the inferred product manifold are used to compute richer similarity measures that are leveraged by the latent graph learning model to obtain optimized latent graphs. Moreover, the curvature of the product manifold is learned during training alongside the rest of the network parameters and based on the downstream task, rather than it being a static embedding space. Our novel approach is tested on a wide range of datasets, and outperforms the original dDGM model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源