论文标题
机器学习原子描述符和订单参数是否讲述相同的故事?液态水的情况
Do Machine-Learning Atomic Descriptors and Order Parameters Tell the Same Story? The Case of Liquid Water
论文作者
论文摘要
机器学习(ML)已成为分子模拟中的关键主力。在这种情况下构建ML模型,涉及使用局部原子描述符编码化学环境的信息。在这项工作中,我们专注于原子位置(SOAP)的平滑重叠及其在研究散装和疏水空气水界面的液态水特性中的应用。通过使用旨在评估在同一数据空间上定义的不同距离度量的相对信息内容的统计测试,我们研究了这些描述符是否提供了与某些用于表征本地水结构(例如氢键,密度或四面体性)的常见顺序参数相同的信息。我们的分析表明,ML描述和局部水结构的标准顺序参数不相等。特别是,这些顺序参数的组合探测局部水环境只能预测肥皂的相似性,而viceversa则根据肥皂相似的环境不一定根据标准顺序参数是相似的。我们还阐明了在编码化学信息中进入肥皂定义中的某些元帕梅特人的作用。
Machine-learning (ML) has become a key workhorse in molecular simulations. Building an ML model in this context, involves encoding the information of chemical environments using local atomic descriptors. In this work, we focus on the Smooth Overlap of Atomic Positions (SOAP) and their application in studying the properties of liquid water both in the bulk and at the hydrophobic air-water interface. By using a statistical test aimed at assessing the relative information content of different distance measures defined on the same data space, we investigate if these descriptors provide the same information as some of the common order parameters that are used to characterize local water structure such as hydrogen bonding, density or tetrahedrality to name a few. Our analysis suggests that the ML description and the standard order parameters of local water structure are not equivalent. In particular, a combination of these order parameters probing local water environments can predict SOAP similarity only approximately, and viceversa, the environments that are similar according to SOAP are not necessarily similar according to the standard order parameters. We also elucidate the role of some of the metaparameters entering in the SOAP definition in encoding chemical information.