论文标题
通过信息瓶颈解开生成,以进行几次学习
Disentangled Generation with Information Bottleneck for Few-Shot Learning
论文作者
论文摘要
由于数据稀缺性,很少有射击学习(FSL)旨在用很少的样本对看不见的类别进行分类。尽管已经探索了FSL的各种生成方法,但这些方法的纠缠生成过程加剧了FSL的分布变化,因此极大地限制了生成的样品的质量。在这些挑战中,我们提出了一种新型的信息瓶颈(IB)的分离式生成框架,称为Disgenib,可以同时保证生成样品的歧视和多样性。具体而言,我们制定了一个新颖的框架,其中包括信息瓶颈,该框架适用于分离的表示和样本的生成。与几乎无法利用先验的基于IB的方法不同,我们证明了我们的Disgenib可以有效利用先验来进一步促进分解。从理论上讲,我们进一步证明了一些以前的生成和分解方法是我们脱发的特殊情况,这证明了提议的disgenib的一般性。关于挑战FSL基准测试的广泛实验证实了Disgenib的有效性和优势,以及我们的理论分析的有效性。我们的代码将在接受后是开源的。
Few-shot learning (FSL), which aims to classify unseen classes with few samples, is challenging due to data scarcity. Although various generative methods have been explored for FSL, the entangled generation process of these methods exacerbates the distribution shift in FSL, thus greatly limiting the quality of generated samples. To these challenges, we propose a novel Information Bottleneck (IB) based Disentangled Generation Framework for FSL, termed as DisGenIB, that can simultaneously guarantee the discrimination and diversity of generated samples. Specifically, we formulate a novel framework with information bottleneck that applies for both disentangled representation learning and sample generation. Different from existing IB-based methods that can hardly exploit priors, we demonstrate our DisGenIB can effectively utilize priors to further facilitate disentanglement. We further prove in theory that some previous generative and disentanglement methods are special cases of our DisGenIB, which demonstrates the generality of the proposed DisGenIB. Extensive experiments on challenging FSL benchmarks confirm the effectiveness and superiority of DisGenIB, together with the validity of our theoretical analyses. Our codes will be open-source upon acceptance.